

Breakup dynamics in the projectile zero binding limit

Bahati Mukeru

Department of Physics, University of South Africa, P. O. Box 392, Pretoria 003, South Africa

We study the breakup dynamics of proton-and neutron-rich systems in the zero binding energy limit. The main motivation is to investigate whether finite breakup observables can be obtained in this limit where an s-wave neutron-rich system can be regarded as an open quantum system. It is first shown that for an s-wave neutron-rich system, the ground-state wave function extends to infinity and it is no longer square-integrable. Despite this, finite breakup cross sections are still obtained, whereas the elastic scattering cross section fails to converge. For proton-rich and non-s-wave neutron-rich systems, the Coulomb and centrigural barriers in the ground-state prevent the extension of the groundstate wave function to infinity as the binding energy approaches zero. In this case, converged elastic scattering cross sections is obtained.

References

[1] B. Mukeru, "Proton-and neutron-rich breakups near zero binding energy" J. Phys. Commun.5 (2021) 075004 DOI:https://doi.org/10.1088/2399-6528/ac0d48

[2] B. Mukeru "Proton-halo breakup dynamics for the breakup threshold in the $\epsilon 0 \rightarrow 0$ limit", Chin. Phys. C 45 (2021) 054107, DOI:10.1088/1674-1137/abe9a3

[3] Ofer Neufeld "Asymptotically tunable quantum states and threshold scattering anomalies" Phys. Rev. A 106 (2022) 012210 DOI: 10.1103/PhysRevA.106.012210

[4] C. M. Gentry and M. A. Popovi´c "Dark state lasers" Opt. Lett. 39 (2014) 4136, DOI:https://doi.org/10.1364/OL.39.004136

[5] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Dominguez, and A. I. Kuznetsov "Directional lasing in resonant semiconductor nanoantenna arrays" Nat. Nan-otechnol. 13 (2018) 1042 [6] M. Rybin and Y. Kivshar, Optical physics: "Light in a laser is confined in the form of standing waves. By engineering such waves, scientists have designed an optical system that enhances this confinement, producing a compact laser that emits a high-quality beam" Nature (London) 541 (2017) 164

[7] J. M. Foley and J. D. Phillips "Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating" Opt. Lett. 40 (2015) 2637, DOI: https://opg.optica.org/ol/abstract.cfm?URI=ol-40-11-2637

[8] J. M. Foley, S. M. Young, and J. D. Phillips "Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating" Phys. Rev.B 89 (2014) 165111, DOI: 10.1103/PhysRevB.89.165111