21 de março de 2018 | Altas Energias, Publicações
Fábio L. Braghin
Phys. Rev. D 97, 054025
21/03/2018
Abstract
Low-energy effective couplings of baryons’ constituent quarks to light vector and axial mesons are derived by considering quark polarization for a dressed one gluon–exchange quark interaction. The quark field is split into two components, one for background constituent quarks and another one for quark-antiquark states, light mesons, and the scalar chiral condensate. By considering a large quark effective mass derivative expansion, several effective coupling constants are resolved as functions of the original model parameters and of components of the quark and gluon propagators. Besides the leading single vector meson–constituent quark gauge–type effective coupling, several two-vector and axial meson–constituent quark couplings are also obtained in the next leading order. Among these, vector and axial mesons mixings induced by constituent quark currrents are found. Approximated and exact ratios between the effective coupling constants in the limit of very large quark effective mass and numerical estimates are exhibited. Numerical results of the corresponding form factors and of the (strong) vector mesons quadratic radius are also presented.