1 de outubro de 2020 | Publicações
Cláudio Nassif, A. C. Amaro de Faria, Rodrigo Francisco dos Santos
Modern Physics Letters A
29/07/2018
Abstract
This work presents an experimental test of Lorentz invariance violation in the infrared (IR) regime by means of an invariant minimum speed in spacetime and its effects on the time when an atomic clock given by a certain radioactive single-atom (e.g. isotope Na[Formula: see text]) is a thermometer for an ultracold gas like the dipolar gas Na[Formula: see text]K[Formula: see text]. So, according to a Deformed Special Relativity (DSR) so-called Symmetrical Special Relativity (SSR), where there emerges an invariant minimum speed V in the subatomic world, one expects that the proper time of such a clock moving close to V in thermal equilibrium with the ultracold gas is dilated with respect to the improper time given in lab, i.e. the proper time at ultracold systems elapses faster than the improper one for an observer in the lab, thus leading to the so-called proper time dilation so that the atomic decay rate of an ultracold radioactive sample (e.g. Na[Formula: see text]) becomes larger than the decay rate of the same sample at room temperature. This means a suppression of the half-life time of a radioactive sample thermalized with an ultracold cloud of dipolar gas to be investigated by NASA in the Cold Atom Lab (CAL).