5 de junho de 2018 | Altas Energias, Publicações
T.Koide, T.Kodama
Physics Letters A Volume 382, Issue 22, 5 June 2018, Pages 1472-1480
05/06/2018
Abstract
The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross–Pitaevskii equation and the Navier–Stokes–Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.